Copied to
clipboard

G = C9×C8.C22order 288 = 25·32

Direct product of C9 and C8.C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C9×C8.C22, Q162C18, C36.64D4, SD162C18, M4(2)⋊2C18, C36.49C23, C72.13C22, C8.(C2×C18), (C9×Q16)⋊6C2, (C2×Q8)⋊6C18, C4.15(D4×C9), C6.79(C6×D4), C24.13(C2×C6), (Q8×C18)⋊11C2, C4○D4.4C18, (C9×SD16)⋊6C2, D4.3(C2×C18), C2.16(D4×C18), C12.74(C3×D4), C18.79(C2×D4), (C2×C18).26D4, Q8.6(C2×C18), (C6×Q8).21C6, (C3×Q16).5C6, C22.6(D4×C9), (C9×M4(2))⋊6C2, C4.6(C22×C18), (C3×SD16).2C6, (C2×C36).68C22, C12.49(C22×C6), (D4×C9).13C22, (C3×M4(2)).2C6, (Q8×C9).14C22, C3.(C3×C8.C22), (C2×C4).5(C2×C18), (C9×C4○D4).5C2, (C2×C6).30(C3×D4), (C3×C8.C22).C3, (C2×C12).66(C2×C6), (C3×C4○D4).15C6, (C3×D4).15(C2×C6), (C3×Q8).28(C2×C6), SmallGroup(288,187)

Series: Derived Chief Lower central Upper central

C1C4 — C9×C8.C22
C1C2C6C12C36D4×C9C9×SD16 — C9×C8.C22
C1C2C4 — C9×C8.C22
C1C18C2×C36 — C9×C8.C22

Generators and relations for C9×C8.C22
 G = < a,b,c,d | a9=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, dcd=b4c >

Subgroups: 126 in 90 conjugacy classes, 60 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C9, C12, C12, C2×C6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C18, C18, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C3×Q8, C8.C22, C36, C36, C2×C18, C2×C18, C3×M4(2), C3×SD16, C3×Q16, C6×Q8, C3×C4○D4, C72, C2×C36, C2×C36, D4×C9, D4×C9, Q8×C9, Q8×C9, Q8×C9, C3×C8.C22, C9×M4(2), C9×SD16, C9×Q16, Q8×C18, C9×C4○D4, C9×C8.C22
Quotients: C1, C2, C3, C22, C6, D4, C23, C9, C2×C6, C2×D4, C18, C3×D4, C22×C6, C8.C22, C2×C18, C6×D4, D4×C9, C22×C18, C3×C8.C22, D4×C18, C9×C8.C22

Smallest permutation representation of C9×C8.C22
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)
(1 114 59 131 42 125 46 102)(2 115 60 132 43 126 47 103)(3 116 61 133 44 118 48 104)(4 117 62 134 45 119 49 105)(5 109 63 135 37 120 50 106)(6 110 55 127 38 121 51 107)(7 111 56 128 39 122 52 108)(8 112 57 129 40 123 53 100)(9 113 58 130 41 124 54 101)(10 92 144 75 20 72 34 86)(11 93 136 76 21 64 35 87)(12 94 137 77 22 65 36 88)(13 95 138 78 23 66 28 89)(14 96 139 79 24 67 29 90)(15 97 140 80 25 68 30 82)(16 98 141 81 26 69 31 83)(17 99 142 73 27 70 32 84)(18 91 143 74 19 71 33 85)
(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(19 143)(20 144)(21 136)(22 137)(23 138)(24 139)(25 140)(26 141)(27 142)(46 59)(47 60)(48 61)(49 62)(50 63)(51 55)(52 56)(53 57)(54 58)(73 84)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 82)(81 83)(100 123)(101 124)(102 125)(103 126)(104 118)(105 119)(106 120)(107 121)(108 122)(109 135)(110 127)(111 128)(112 129)(113 130)(114 131)(115 132)(116 133)(117 134)
(1 89)(2 90)(3 82)(4 83)(5 84)(6 85)(7 86)(8 87)(9 88)(10 122)(11 123)(12 124)(13 125)(14 126)(15 118)(16 119)(17 120)(18 121)(19 110)(20 111)(21 112)(22 113)(23 114)(24 115)(25 116)(26 117)(27 109)(28 131)(29 132)(30 133)(31 134)(32 135)(33 127)(34 128)(35 129)(36 130)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(43 79)(44 80)(45 81)(46 66)(47 67)(48 68)(49 69)(50 70)(51 71)(52 72)(53 64)(54 65)(55 91)(56 92)(57 93)(58 94)(59 95)(60 96)(61 97)(62 98)(63 99)(100 136)(101 137)(102 138)(103 139)(104 140)(105 141)(106 142)(107 143)(108 144)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,114,59,131,42,125,46,102)(2,115,60,132,43,126,47,103)(3,116,61,133,44,118,48,104)(4,117,62,134,45,119,49,105)(5,109,63,135,37,120,50,106)(6,110,55,127,38,121,51,107)(7,111,56,128,39,122,52,108)(8,112,57,129,40,123,53,100)(9,113,58,130,41,124,54,101)(10,92,144,75,20,72,34,86)(11,93,136,76,21,64,35,87)(12,94,137,77,22,65,36,88)(13,95,138,78,23,66,28,89)(14,96,139,79,24,67,29,90)(15,97,140,80,25,68,30,82)(16,98,141,81,26,69,31,83)(17,99,142,73,27,70,32,84)(18,91,143,74,19,71,33,85), (10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,143)(20,144)(21,136)(22,137)(23,138)(24,139)(25,140)(26,141)(27,142)(46,59)(47,60)(48,61)(49,62)(50,63)(51,55)(52,56)(53,57)(54,58)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,82)(81,83)(100,123)(101,124)(102,125)(103,126)(104,118)(105,119)(106,120)(107,121)(108,122)(109,135)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134), (1,89)(2,90)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,122)(11,123)(12,124)(13,125)(14,126)(15,118)(16,119)(17,120)(18,121)(19,110)(20,111)(21,112)(22,113)(23,114)(24,115)(25,116)(26,117)(27,109)(28,131)(29,132)(30,133)(31,134)(32,135)(33,127)(34,128)(35,129)(36,130)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,64)(54,65)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,97)(62,98)(63,99)(100,136)(101,137)(102,138)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144), (1,114,59,131,42,125,46,102)(2,115,60,132,43,126,47,103)(3,116,61,133,44,118,48,104)(4,117,62,134,45,119,49,105)(5,109,63,135,37,120,50,106)(6,110,55,127,38,121,51,107)(7,111,56,128,39,122,52,108)(8,112,57,129,40,123,53,100)(9,113,58,130,41,124,54,101)(10,92,144,75,20,72,34,86)(11,93,136,76,21,64,35,87)(12,94,137,77,22,65,36,88)(13,95,138,78,23,66,28,89)(14,96,139,79,24,67,29,90)(15,97,140,80,25,68,30,82)(16,98,141,81,26,69,31,83)(17,99,142,73,27,70,32,84)(18,91,143,74,19,71,33,85), (10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(19,143)(20,144)(21,136)(22,137)(23,138)(24,139)(25,140)(26,141)(27,142)(46,59)(47,60)(48,61)(49,62)(50,63)(51,55)(52,56)(53,57)(54,58)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,82)(81,83)(100,123)(101,124)(102,125)(103,126)(104,118)(105,119)(106,120)(107,121)(108,122)(109,135)(110,127)(111,128)(112,129)(113,130)(114,131)(115,132)(116,133)(117,134), (1,89)(2,90)(3,82)(4,83)(5,84)(6,85)(7,86)(8,87)(9,88)(10,122)(11,123)(12,124)(13,125)(14,126)(15,118)(16,119)(17,120)(18,121)(19,110)(20,111)(21,112)(22,113)(23,114)(24,115)(25,116)(26,117)(27,109)(28,131)(29,132)(30,133)(31,134)(32,135)(33,127)(34,128)(35,129)(36,130)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,66)(47,67)(48,68)(49,69)(50,70)(51,71)(52,72)(53,64)(54,65)(55,91)(56,92)(57,93)(58,94)(59,95)(60,96)(61,97)(62,98)(63,99)(100,136)(101,137)(102,138)(103,139)(104,140)(105,141)(106,142)(107,143)(108,144) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144)], [(1,114,59,131,42,125,46,102),(2,115,60,132,43,126,47,103),(3,116,61,133,44,118,48,104),(4,117,62,134,45,119,49,105),(5,109,63,135,37,120,50,106),(6,110,55,127,38,121,51,107),(7,111,56,128,39,122,52,108),(8,112,57,129,40,123,53,100),(9,113,58,130,41,124,54,101),(10,92,144,75,20,72,34,86),(11,93,136,76,21,64,35,87),(12,94,137,77,22,65,36,88),(13,95,138,78,23,66,28,89),(14,96,139,79,24,67,29,90),(15,97,140,80,25,68,30,82),(16,98,141,81,26,69,31,83),(17,99,142,73,27,70,32,84),(18,91,143,74,19,71,33,85)], [(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(19,143),(20,144),(21,136),(22,137),(23,138),(24,139),(25,140),(26,141),(27,142),(46,59),(47,60),(48,61),(49,62),(50,63),(51,55),(52,56),(53,57),(54,58),(73,84),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,82),(81,83),(100,123),(101,124),(102,125),(103,126),(104,118),(105,119),(106,120),(107,121),(108,122),(109,135),(110,127),(111,128),(112,129),(113,130),(114,131),(115,132),(116,133),(117,134)], [(1,89),(2,90),(3,82),(4,83),(5,84),(6,85),(7,86),(8,87),(9,88),(10,122),(11,123),(12,124),(13,125),(14,126),(15,118),(16,119),(17,120),(18,121),(19,110),(20,111),(21,112),(22,113),(23,114),(24,115),(25,116),(26,117),(27,109),(28,131),(29,132),(30,133),(31,134),(32,135),(33,127),(34,128),(35,129),(36,130),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(43,79),(44,80),(45,81),(46,66),(47,67),(48,68),(49,69),(50,70),(51,71),(52,72),(53,64),(54,65),(55,91),(56,92),(57,93),(58,94),(59,95),(60,96),(61,97),(62,98),(63,99),(100,136),(101,137),(102,138),(103,139),(104,140),(105,141),(106,142),(107,143),(108,144)]])

99 conjugacy classes

class 1 2A2B2C3A3B4A4B4C4D4E6A6B6C6D6E6F8A8B9A···9F12A12B12C12D12E···12J18A···18F18G···18L18M···18R24A24B24C24D36A···36L36M···36AD72A···72L
order12223344444666666889···91212121212···1218···1818···1818···182424242436···3636···3672···72
size11241122444112244441···122224···41···12···24···444442···24···44···4

99 irreducible representations

dim111111111111111111222222444
type++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6C9C18C18C18C18C18D4D4C3×D4C3×D4D4×C9D4×C9C8.C22C3×C8.C22C9×C8.C22
kernelC9×C8.C22C9×M4(2)C9×SD16C9×Q16Q8×C18C9×C4○D4C3×C8.C22C3×M4(2)C3×SD16C3×Q16C6×Q8C3×C4○D4C8.C22M4(2)SD16Q16C2×Q8C4○D4C36C2×C18C12C2×C6C4C22C9C3C1
# reps11221122442266121266112266126

Matrix representation of C9×C8.C22 in GL4(𝔽73) generated by

16000
01600
00160
00016
,
18116218
14431762
19193062
54195955
,
10100
072063
00720
0001
,
10641756
64105617
710639
071963
G:=sub<GL(4,GF(73))| [16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[18,14,19,54,11,43,19,19,62,17,30,59,18,62,62,55],[1,0,0,0,0,72,0,0,10,0,72,0,0,63,0,1],[10,64,71,0,64,10,0,71,17,56,63,9,56,17,9,63] >;

C9×C8.C22 in GAP, Magma, Sage, TeX

C_9\times C_8.C_2^2
% in TeX

G:=Group("C9xC8.C2^2");
// GroupNames label

G:=SmallGroup(288,187);
// by ID

G=gap.SmallGroup(288,187);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-3,-2,365,1016,3110,192,5884,2951,242]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,d*c*d=b^4*c>;
// generators/relations

׿
×
𝔽